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ABSTRACT

Computer simulation results for highly compressed molecular hydrogen and deuterium

fluids at pressures up to 100 GPa are presented. Non-empirical atom-atom

approximation for non-rigid molecules was used for description of intra- and

intermolecular interactions. Quantum corrections are included within the Feynman

variational approach. Pressure, energy, isothermal compressibility, thermal expansion,

heat capacities, speed of sound, as well as transport properties of hydrogen and

deuterium fluids at elevated temperatures and high densities are computed using

appropriate computer simulation procedures. Predictions of self-diffusion, shear

viscosity and heat conductivity of shock-compressed deuterium and hydrogen fluids are

presented.

KEY WORDS: atom-atom potentials; computer simulation; deuterium; heat

capacity; heat conductivity; high density; molecular hydrogen; self-diffusion; viscosity.
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1. INTRODUCTION

Structure, thermodynamic and transport properties of hydrogen isotopes in the

condensed phase have been studied intensively for many years. A rich body of

experimental material in the cryogenic [1] as well as in high-temperature [2,15] regions

has been accumulated. At high pressures the most important experimental results have

been obtained in the solid phase by the diamond anvil method [3].

Fluid hydrogen isotopes at intermediate temperatures remain much less

investigated. The existing published data has yielded the equation of state for the solid

state [5] and for the fluid phase of normal hydrogen at temperatures up to 500 K and

pressures up to 2 GPa [4]. Between the high-temperature and high-pressure dynamic

shock-compression data and that low-temperature limit no experimental studies were

performed. The transport properties of hydrogen or deuterium fluids in this region of

high density and elevated temperatures are almost unknown.

Since it is quite difficult to do an experiment here, it is of particular urgency to

undertake a theoretical prediction of the properties of highly compressed fluid

hydrogen. However, there is an extremely restricted choice of non-empirical methods of

predicting the properties of such dense systems. Methods based on the direct quantum-

mechanical computer simulation, e.g., the path-integral Monte Carlo (PIMC) method

[6], are very demanding of computational resources and have not yet attained the

necessary accuracy.

There are certain difficulties in applying to hydrogen the well-developed methods

of the theory of liquids, which make use of the model of rigid, impermeable molecules.

The absence of closed atomic electronic shells makes hydrogen extremely compressible

and stable at once in condensed phase. The softness of intermolecular repulsion in
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hydrogen becomes very important at high densities. It is just what makes hydrogen

different from many other substances, and therefore the well-known and useful

molecular models like hard spheres or dumbbells could not be applied to hydrogen

without essential modification.

The difficulties facing the theoretical prediction of the properties of highly

compressed hydrogen are also due to the appreciable quantum effects [5]. Non-rigidity

effects, which play an important role in highly compressed fluid hydrogen at high

temperatures [7,9], remain substantial at intermediate temperatures as well, especially

near the line of crystallization, where the density of the fluid is high. In this region, one

cannot also neglect quantum effects, particularly for the light isotopes of hydrogen. The

goal of the present study is to investigate the possibility of using the approximation

based on atom-atom potentials (AAP) [9] in order to predict the behavior of

thermophysical properties of dense hydrogen at intermediate temperatures and high

densities.

2. AB INITIO ATOM-ATOM POTENTIALS

In the AAP approximation [7,9], the energy of interaction of hydrogen

molecules is expressed in terms of the interaction energy of individual pairs of atoms.

Two hydrogen atoms interact differently depending on their total spin. In the singlet

ground state the atoms form an H2 molecule - a bound 1Σ state with a well depth of

about 4.75 eV and a bond length of 0.74 Å. In the triplet exited state 3Σ the curve of the

interaction energy does not have a minimum (except for a small dispersion well at a

distance greater than 3 Å).

In the AAP approximation, the intermolecular interaction energy can be

expressed relatively simply in terms of the interaction energy of the atoms within the
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molecule. This approximation is based on the Bohm-Alrichs theorem, which was

proved by those authors in Ref.[8] in the Hartree-Fock approximation, in which the

molecular orbitals are represented by a linear combination of atomic orbitals (LCAO

MO). According to the theorem, the energy of the non-valent interaction of two atoms

(i.e., the interaction energy of two atoms belonging to different molecules with closed

electronic shells) is equal to the weighted average (i.e., with allowance for the

degeneracy with respect to projections of the spin and orbital angular momenta) of the

interaction energy of two free atoms calculated in this same approximation.

According to the theorem, the non-valent interaction potential φ(r) of hydrogen

atoms can be calculated as a linear combination of the singlet and triplet potentials, with

weights proportional to the multiplicities of these states:

( ) ( ) ( )rU
4
3rU

4
1r 31 Σ+Σ=φ . (1)

Here U(1Σ | r ) is the interaction energy of two atoms in the 1Σ ground state (with

antiparallel spins); U(3Σ |r) is the interaction energy of atoms in the 3Σ exited state (with

parallel spins).

Within AAP approximation the total energy of two H2 molecules found in their

ground electronic states consists of intra- and intermolecular contributions:

( ) ( ) ( ) ( ) ( ) ( )2423141334
1

12
1

2 rrrrRURUU φ+φ+φ+φ+Σ+Σ= .    (2)

The indices 1 and 2 refer to the atoms bound together in the first molecule, while 3 and

4 refer to the atoms bound in the second molecule. Here and below Rij = R12,R34,…  are

the intramolecular interatomic distances (the instantaneous lengths of the chemical

bonds in the molecules), while rij = r13,r14,…  denote the instantaneous distances

between atoms of different molecules (intermolecular distances).
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For N atoms (N/2 molecules) the generalization of Eq. (2) is written

( ) ( )∑∑ φ+Σ=
inter

ij
intra

ij
1

N rRUU . (3)

The first sum in (3) is over the intramolecular interactions of all N/2 molecules, and the

second sum is over all the N(N-1)/2 pairs of atoms belonging to different molecules.

Eq.(3) is applicable to any spatial distribution of atomic centers if an additional rule for

the selection of bonded atomic pairs (chemical bonds localization) is adopted. We

applied the following algorithm [9]. The first pair at given specific configuration of N

atoms is taken to be that which  have the shortest interatomic separation. Excluding

these two atoms, the next pair is taken to be that having the shortest interatomic distance

amongst the remaining N-2 atoms etc. until all the atoms have been exhausted.

We applied the following analytical approximation for the ground 1Σ state [9]:

( ) ( ) ( ) ( ) ( )[ ]cxxb1xax2x2DRU 3
e

1 −−−−−−=Σ expexpexp , (4)

where ( )14403.1 −= errx , er = 0.74126 Å, kDe  = 55088 K, a=0.1156, b=1.0215,

c=1.72.  Eq.(4) gives an excellent approximation of the +Σg
1 -curve within a wide range

of distances (0.3-5Å). The nonvalent interaction potential φ(r) was represented in the

approximation proposed by Saumon and Chabrier[13]:

( ) ( ){ } ( ) ( ){ }[ ]*exp*exp rrs1rrs2r 21 −−γ+−−−γε=φ . (5)

The parameters appearing in Eq.(5), r*  = 3.2909 Å, ε  = 1.74 10-3 eV, γ = 0.4615, s1 =

1.6367 Å-1, and s2 = 1.2041 Å-1, were obtained in Ref. [13] on the basis of the well-

known variational calculations of Kolos and Wolniewitz for the H2 molecule[10]. Eq.(5)

also gives a very accurate description of potential (1) over a wide interval of distances

(from 0.5 to 3.5 Å), including the region of strong repulsion at short distances and the

region of weak dispersional attraction at large distances.
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Thus, the AAP approximation (1)-(3) with the potentials (4) and (5) permits a

quite simple determination of the potential surface of the ground state of a system

consisting of an arbitrary number of hydrogen molecules. We note that this

approximation does not contain any adjustable parameters found from the experimental

data but uses only the pair potentials U(1Σ |R) and U(3Σ |R) obtained from  ab initio

calculations [10].

A comparison of the predictions of the AAP approximation with the results of

direct quantum-mechanical calculations of the H2-H2 interaction energy and with the

results of experiments on the scattering of molecular beams has shown [7] that this

approximation gives an entirely satisfactory description of the short-range repulsion of

the molecules but that the molecular attraction at large distances is overestimated

somewhat [12] . At large intermolecular distances, the AAP approximation does not

recover also the asymptotic behavior of the orientational part of the intermolecular

potential, in particular, that of its quadrupole-quadrupole component. This shortcoming,

which is important at relatively low densities, can also be important in the description of

some phase transitions in solid hydrogen [5]. At the same time, at high pressure in the

isotropic phase, where the main role is played by the short-range repulsive forces, this

aspect of the AAP approximation plays a secondary role.

3. QUANTUM CORRECTIONS

For predicting the thermodynamic behavior of dense deuterium and especially

hydrogen at lower temperatures on the basis of the AAP approximation, we modified

this approach to incorporate quantum-mechanical effects, which play a governing role

in the behavior of these light molecules at low temperatures. We adopted [12] the
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approach proposed by Feynman, which is based on his variational procedure for the free

energy [11].

In this approach the free energy of a quantum-mechanical particle in an external

field can be calculated approximately by a classical method if its potential energy V(r) is

replaced by a certain effective potential given by

( ) dtttrV1TrU 2∫
+∞

∞−

−λ+
π

= )(exp),(~ . (6)

The parameter

kTm6!=λ  (7)

plays the role of the quantum-mechanical wavelength associated with the given particle;

k is Boltzmann's constant.

In the simplest cases, the quantum corrections to the potential within

approximation (6) are easily calculated explicitly.  As was shown in Ref. [12],

considering quantum effects in the framework of the Feynman approach reduces simply

to some increase in the effective interatomic repulsion. A rough estimate of the possible

influence of these effects on the repulsion of the atoms was made by taking into account

that the parameter b is close to 2 (a.u.)-1 for many atoms [7]. For example, for deuterium

at T = 500 K the increase in the repulsion is only around 2.5%, but for hydrogen at

T=200 K it is already about 20%.

As to the intramolecular vibrations, their quantum character is manifested at

much higher temperatures, so that a quantum correction becomes comparable to the heat

capacity itself at temperatures below 1000 K.  In view of this (while remaining formally

within the framework of the Feynman approach), we replaced the first-order quantum

correction to intramolecular  energy by the exact expression for harmonic oscillator
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[12]. At high temperatures, it goes over to the original Feynman approach, and at low

temperatures, it gives the exact expression for the harmonic-oscillator contribution to

the free energy and the other thermodynamic properties.

Thus one can assume that in the investigated temperature interval, taking

quantum effects into account in the intermolecular interaction can be done at the level of

a correction to the intermolecular potential, and the Feynman variational approach [11]

can be completely applicable to highly compressed hydrogen isotopes at temperatures

higher than ambient.

4. MONTE CARLO SIMULATION

To predict the equilibrium properties of fluid hydrogen on the basis of the AAP

approximation with the quantum corrections introduced above, we chose the method of

Monte Carlo simulation. The calculation was done in an NVT ensemble, with N

hydrogen atoms placed in a rectangular cell with periodic boundary conditions. The size

of the cell was determined by the specified density n = N/V, and the initial configuration

corresponded to a random distribution of molecules with bond lengths close to the

equilibrium bond length Re. Each step of the experiment included a random choice of an

individual atom, for which an attempt was made to move it to a new position within a

specified distance δ. Discrimination of the steps was carried out by the standard

Metropolis method [14]. The value of δ was chosen such that around 40% of the steps

were successful. It took about 1000 successful steps/atom to establish the equilibrium

distribution. Probable errors were estimated by standard statistical methods for a

significance level of 0.05.

The isothermal compressibility, the thermal pressure, and the isochoric heat

capacity CV were computed along with the pressure and the total energy [12]. The
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calculations were performed for N = 256 or N = 500 atoms in the cell (128 and 250 H2

or D2 molecules in the cell, respectively). The interatomic interaction potential was ‘cut

off’ at a distance rmax = 5 Å; this did not introduce any new errors of practical

consequence.

5. MOLECULAR (ATOMIC) DYNAMICS PROCEDURE

In order to predict transport properties of dense fluid hydrogen, we examined a

classical system of N atoms forming non-rigid homonuclear diatomic molecules. The

method applied is similar to the well-known molecular dynamics method [16], except

the structure element chosen. We consider the separate atoms in molecules within

classical mechanics as elements of structure and performed such atomic dynamics (AD)

simulation at constant number of atoms N, volume V and energy E (NVE-simulation)

with periodic boundary conditions. Newton equations of atomic motion have been

integrated using the simplest three-point algorithm described by Norman et al. [16].

Low masses of hydrogen isotopes along with high frequencies of intramolecular

vibrations and strong intermolecular forces require relatively short time steps in

numerical integration of equations of motion.

The time step ∆t ranged from 0.0001 picosecond (10-16 s) at relatively high

temperatures and densities up to 0.001 picosecond (10-15 s) at lower temperatures and/or

densities. Larger values of ∆t speed up the equilibration (relaxation) period in AD-

simulation but require special efforts for maintaining the desired temperature. We

applied correction factors to all velocities during relaxation period, preceding the main

AD run to keep temperature close to the given value, and also checked the

correspondence between atomic velocities, center-of-mass velocities, and the Maxwell’s

distribution.
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We used 'near-equilibrium' atomic distributions generated in our Monte Carlo

simulations as starting atomic configurations and after Maxwell equilibrium distribution

was reached, we computed self-diffusion D, viscosity η and heat conductivity κ and

corresponding velocity, shear-stress and heat-flux autocorrelation functions (ACF). We

also calculated interatomic and intramolecular distribution functions. All results

presented below are averaged values over 1000 runs of 0.2 picoseconds each. Every set

of runs took from 100 up to 200 hours on PC (in background).

6. RESULTS AND DISCUSSION

6.1. Thermodynamic functions.

The results of MC computer simulation and the data obtained in Ref.[4] are in

quite good agreement, overall (see Table 1). The only disagreement is that the

calculated pressure of the fluid hydrogen is somewhat (about 0.2 GPa) lower than

experiment, even when the quantum corrections are taken into account [12]. This is

apparently due to the aforementioned characteristic overestimate of the attraction of the

molecules at large distances in the AAP approximation [9].

As expected, quantum effects particularly influence the isochoric heat capacity

over the entire investigated temperature interval. The corrections to the thermal

expansion coefficients and sound velocity are less important, but even for them the

agreement with experiment is improved when these corrections are taken into account.

As the temperature increases, this agreement becomes better and better, although even

for T=200 K the predictions remain satisfactory. It is seen that the quantum corrections

in the given temperature interval give approximately the same contribution to the

pressure (of the order of 10%) as the typical value of the intramolecular contribution [9]

due to the non-rigidity of the hydrogen molecule. Considering the quantum corrections
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is necessary not only in calculating the heat capacity but also the thermal expansion, and

it substantially improves the agreement with experiment, especially at low temperatures.

For an approach that does not contain even one adjustable parameter, the agreement can

be considered completely satisfactory.

6.2. Transport properties.

In Table 2, we present the predicted pressures and transport properties of fluid

hydrogen at high densities and different temperatures. The simulation results are

compared here also to shock-compression data [2,15].

Self-diffusion coefficients D have been estimated in three ways: 1) from the long-

time slope of the mean-square atomic displacement, 2) as integrals of time-dependent

atomic velocity ACF, and 3) as integrals of time-dependent molecular center-of-mass

velocity ACF. All approaches give the same result within estimated error limits. The

computation of shear viscosity and thermal conductivity is computationally more time

consuming (it requires much more runs in AD-simulation) but is only technical

difficulty. Unfortunately, we do not know any measured or predicted values of transport

coefficients at shock-compression conditions to compare our predictions with. The

estimated statistical error of predicted shear viscosity and thermal conductivity is still

significant, but the more precise prediction is beyond powers of AD simulation on

available PC and requires high-performance computer.

6.3. Velocity autocorrelation functions.

In Fig.1 and 2 we present the time-dependent atomic ACFs along with molecular

center-of-mass (dot line) velocity ACF at low and high temperatures. There is a

pronounced fine oscillation structure of the atomic velocity ACF while the time

dependence of the molecular center-of-mass velocity ACF is smooth and quite usual for
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simple liquids at high densities. The period of those oscillations is close to the period of

intramolecular vibration [17]. It is clear, that highly compressed molecular fluid,

composed from non-rigid molecules, will behave like a system of strongly coupled

oscillators. The ACF oscillations are much more pronounced at higher densities and

lower temperatures. The higher the temperature is, the more damped the ACF

oscillations are.

7. CONCLUSIONS

The predictions of the AAP approximation are in reasonable agreement with the

existing experimental data both at moderate and at high temperatures, in spite of the fact

that the AAP potentials do not explicitly contain contributions from the short-range

multiparticle and long-range electrostatic intermolecular forces and that the electronic

excitation of the molecules is not fully taken into account [7,9].

Quantum corrections introduced to the AAP approximation [12] provide the

possibility to calculate the thermodynamic properties and structure parameters of fluid

hydrogen at high pressures, beyond the limits of the experimentally investigated region.

The temperature and density dependence of self-diffusion in fluid hydrogen

predicted within AAP approximation was examined in Ref.[17]. Self-diffusion

coefficient demonstrates very slow decrease with compression in contrast with

predictions of the hard-sphere model. The temperature dependence of D is rather gas-

like (power) than inverse-exponential one, typical to the activation mechanism of

diffusion.  Our simulations have also shown that the time-dependent atomic

autocorrelation functions in diatomic fluid had fine oscillation structure, more

pronounced at lower temperatures and higher compressions.
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Both Enskog and Frenkel approaches fail to describe the simulated density and

temperature dependence of self-diffusion coefficients in dense fluid hydrogen (see Ref.

[17] for details). It is not surprising because the hydrogen inter-atomic repulsion, as was

mentioned above, is very soft. The log(nD)– 1/T -dependence is far from linearity, in

contrast to Frenkel’s activation theory. At the same time the slope of log(nD)– log(T)

dependence is nearly constant [17] and changes with density from values close to ½

(corresponding to the known ideal-gas law) up to 1.5 and more. Unfortunately, the

inaccuracy of our shear viscosity and heat conductivity predictions makes them

inconclusive in respect of suitability of existing theories for highly compressed hydrogen

fluid.

Of course, such simple model as AAP approximation cannot pretend to complete

description of dense hydrogen. At least two important effects have been omitted in the

present calculations. Firstly, using atom-atom models means that the effects of electronic

polarisability and long-range forces are not correctly treated. Secondly, we have ignored

electronic excitations, leading in the end to the metallization of hydrogen at higher

densities and to the dissociation at higher temperatures.

Although the AAP approximation does suffer from the list of shortcomings

mentioned above, as a non-empirical approach this approximation has its indisputable

advantages and its own sphere of application. This approach requires a minimum of

initial information for predicting the properties, makes it possible to describe the effects

of molecular non-rigidity, and can be useful for predicting not only of thermodynamic

behavior of molecular fluids at high pressures but also of the diffusion, viscosity, and

other transport properties of compressed fluids.
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 Table 1.

Predicted (MC) and experimental [4] pressures P, isochoric CV and isobaric CP heat

capacities, thermal expansion αT and isothermal compressibility βT and speed of sound a

of fluid hydrogen on the P = 2 GPa isobar  at T = 200 K (V=11.17 cm3 mol-1, λ = 0.20

Å), T=300 K (V = 11.63 cm3 mol-1, λ = 0.16 Å), and T=500 K (V = 12.53 cm3 mol-1, λ

= 0.13 Å)

T            (K) 200 300 500

MC [4] MC [4] MC [4]
Δ*)

P          (Gpa) 1.81 2.00 1.75 2.00 1.72 2.00 0.01

Cv/R 2.84 2.98 3.22 3.24 3.12 3.14 0.03

Cp/R 3.26 3.62 3.62 3.64 3.56 3.68 0.05

αT        (10-3 K-1) 0.48 0.42 0.37 0.39 0.32 0.36 0.03

βT        (GPa-1) 0.15 0.15 0.15 0.16 0.18 0.18 0.02

a         (km s-1) 6.59 6.40 6.59 6.38 6.34 6.37 0.05

*) estimated statistical error of MC simulation, N = 256
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Table 2.

Predicted pressures and transport coefficients of hydrogen and deuterium fluids

PredictedIsotope Na T

(K)

V

(cm3mol-1)

P

(GPa)

PMC

(GPa)

DAD

(10-8 m2s-1)

ηAD

(10-4
 Pa s)

κAD

(W m-1 K-1)

H2 256 300 11.63 2.0 1) 1.72 4) 2.89±0.04 0.48±0.20 1.09±0.37

H2 256 500 12.53 2.0 1) 1.75 4) 6.22±0.06 0.56±0.09 1.14±0.18

D2 500 2275 3.44 100 2) 107.4 4.08±0.04 5.30±1.07 5.32±1.20

D2 256 2820 7.98 12.0 3) 12.9 13.54±0.09 1.26±0.21 1.71±0.24

D2 500 3910 4.51 52.5 3) 59.8 11.3±0.1 2.9±0.7 3.4±0.8

D2 256 4660 7.02 22.6 3) 22.2 20.1±0.14 1.5±0.3 2.9±0.35

1)
 Ref.[4]    2)

 Ref.[2]      3)
 Ref. [15]    4) including quantum corrections [16]
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Fig.1.

Molecular (1) and atomic (2,3,4) normalized autocorrelation functions of the

compressed fluid hydrogen at relatively low temperature T=300 K (P=2 GPa). The fine

oscillation structure of the heat flux (thick line 2), atomic shear stress (thin solid line 3),

and the velocity ACF (dot - line 4) have the same time period as the intramolecular

vibration mode.
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Fig.2.

ACFs in hydrogen fluid at high temperature T=3910 K and P=50 GPa fall away much

faster and their oscillation structure is less pronounced than at low temperatures. The

labels are the same as on Fig.1.


